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J. Phys. A: Math. Gen. 13 (1980) 2599-2608. Printed in Great Britain 

Eigenvalues of Fokker-Planck operators 

Ivan KuSEert and Reinhard Illner 
Fachbereich Mathematik, Universitat Kaiserslautern D-6750 Kaiserslautern, Federal 
Republic of Germany 

Received 5 June 1979 

Abstract. Fourier-transformed Fokker-Planck transport operators, T ( k )  = 
-(V - U) , &(U) . V + ik.  U, have discrete spectra for most physically reasonable friction 
tensors &(U). The set of eigenvalues {A,&)} represents a collection of single and/or 
multiple-valued functions analytic in k,  with no other singularities than branch points, which 
are also branch points for the eigenprojections P, ( k ) .  Corresponding analytic behaviour is 
found with the eigenfunctions ~$ , (k ,  U), chosen in such a way that (4a, 4;) = S,, and 
P, = ( *  , q52)4,. Eigennilpotents and generalised eigenfunctions (which are not proper 
eigenfunctions) only appear at branch points and possibly at some other meeting points of 
eigenvalues. Each eigenvalue remains real for sufficiently small real k,  until it meets its first 
branch point. Within this region, the eigenfunctions are conveniently classified by three 
labels analogous to quantum numbers, a = (n ,  I ,  m). A necessary condition for the meeting 
point of two eigenvalues Anlm and A,,IJ,, to be a branch point is m = m' .  

1. Introduction 

In Markovian approximations to linearised kinetic theory, one-particle distributions 
are sought as solutions of various kinetic equations. If no internal degrees of freedom 
are involved, we write 

f ( r ,  U, t )  =: (2.rr)-3/2 exp(-u2/2)[const + h(r,  U, t ) ] ,  

where v 2  stands for mu2/kT,  In absence of sources and external forces, the kinetic 
equation for h has the form 

( a / d t  + U. V + C ) h  (r, U, t )  = 0 ,  (1) 
where C is the collision operator. We recall (Illner and KuSEer 1979, henceforth 
referred to as I) that C is the generator of a semigroup describing the Markov process 
under consideration. The ansatz 

h(r,  U, t )  = #a(k,  U )  exp(ik. r )  exp(-A,t) 

describes distributions periodic in space and approaching equilibrium exponentially. 
This leads to the eigenvalue problem 

(T(k)-Ae)da = O ,  (2) 
with the operator T ( k )  = C + ik . U. 
t Now at the Department of Physics, University of Ljubljana, PO Box 543, Ljubljana, Yugoslavia. 
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2600 I KuZer and R Illner 

Diffusion (Brownian motion) of a particle weakly coupled to the surrounding 
medium or of isolated heavy particles in a gas of light molecules (Rayleigh gas mixture) 
can be approximated by a continuous Markov process. The same holds for any 
combination of both cases, eg for the diffusion of isolated heavy ions in a light plasma. 
The kinetic equation for such a process is of the Fokker-Planck type, with the collision 
operator having the form 

c = - ( V - U )  . S ( U ) .  v, 
or in spherical coordinates (Corngold 1977) 

where &'(U) is the friction tensor and l l l ( v )  and l l ( v )  its components parallel and 
perpendicular to U. 

In an earlier paper (I) the spectra of C and T ( k )  were investigated in the space 
L2(R3) with Maxwellian weight. T(0)  = C is selfadjoint in this space. It was found that 
for a large class of friction tensors both spectra are discrete, which is to say that the 
resolvent (T(k) -A)- '  is compact for A not in the spectrum of T ( k ) .  Sufficient 
conditions for this to be true are that the tensor l ( u )  is positive-definite, that its 
components are locally bounded and once continuously differentiable, and that for 
V + o O  

lim l l I (U) ' 0 ,  l im(l/~ll l(v))(d5ll/d~) = 0.  

This paper is intended to analyse the general behaviour of eigenvalues and eigen- 
functions when k is varied. The properly extended T ( k )  will be regarded as a member 
of a holomorphic family of closed form-sectorial operators with common domain D ( C )  
(I), ie, a family of type B according to Kat0 (1966, henceforth referred to as K). 
Rotational invariance of C makes sure that the eigenvalues only depend upon k2  = 
k: + k: + kl .  For real k they are real or they appear in complex-conjugate pairs (I). 
The operator C is real in the sense that it makes real functions out of real ones, 
Therefore, if &(k, U )  is an eigenfunction belonging to the eigenvalue A,(k) of T ( k ) ,  
then @(k, U )  belongs to the eigenvalue A:(k) of T i ( k )  = T(-k") .  

The uncomplicated picture of the eigenvalues, eigenprojections and eigenfunctions 
which will emerge from the subsequent analysis is characteristic of operators of the form 
C + ikL, where C is real and positive-semidefinite and has a discrete spectrum, while L 
is real and selfadjoint, with the form (Lx, x) having a vanishing relative bound with 
respect to (Cx, x). 

2. Branching of eigenvalues 

We are going to investigate the T ( k )  for k = ke, where e shall be a fixed real unit vector, 
while k varies and may be complex. The restriction yields a one-parametric family of 
operators, which is holomorphic in the whole complex plane of k. Such a family is 
known to have the following properties (see K, 0 11.1, § VII.1.3, Theorem 1.8 and 
subsequent remark): 

For any point ko and for any finite collection of eigenvalues {A, (k)} we can find an 
open neighbourhood of ko where {A,(k)} constitutes a set of single and/or multiple- 
valued analytic functions, with no other singularities except possibly a branch point at 
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ko. Even then, they remain continuous at ko. Branch points can only, but do not 
necessarily, occur at those values of k where two or more of the eigenvalues meet. 

If two eigenvalues A,(k)  and A p ( k )  meet at a 'meeting point' ko,  both may be 
analytically continued around this point. Upon completion of the cycle, the original 
eigenvalues are obtained either in the original or transposed order. In the first case, 
A, ( k )  and A p ( k )  represent analytic functions which are distinct in the neighbourhood of 
ko; the curves A, (k )  and A p ( k )  just cross, without affecting each other. In the second 
case ko is a branch point of first order, and the Puiseux series begins as follows (K, 
9 II.1.2), 

(4) 

According to the theory of selfadjoint holomorphic families of operators (K, 
§ VII.3.1), each eigenvalue A, ( k )  is a holomorphic function in some neighbourhood of 
k = 0, where T ( k )  is selfadjoint. None of the eigenvalues can have a branch point there. 
Next we consider a varying real k,  starting with k = 0. If some A (0) is degenerate, it may 
split into several eigenvalues A, ( k ) ,  A p  ( k ) ,  . . . , each behaving as a distinct analytic 
function near k = 0. Each is even in k and real for purely imaginary k since in this case 
T ( k )  is selfadjoint. That is, each admits a series in powers of k 2  with real coefficients. 
Consequently, also for real k each A, (k )  remains real for a while, namely until it meets 
another eigenvalue at some ko such that this is the first branch point for A,(k). If only 
two eigenvalues meet there, they are real below ko and complex-conjugate beyond, 
according to equation (4). 

3 / 2  + A , ,p (k)  = A (ko)* c l (k0 -  k)'" +Cz(ko- k )  f ~ g ( k 0 -  k )  . . . . 

3. Eigenprojections 

Along with the eigenvalues A, ( k )  also the corresponding (non-selfadjoint) eigenpro- 
jections P, (k) and eigennilpotents D, (k) are holomorphic functions in some neigh- 
bourhood of the chosen k, except possibly at meeting points (K, § 11.1.5). Through 
analytic continuation around such points we recognise the projections as single- or 
multiple-valued analytic functions. On the other hand, all the nilpotents vanish every 
where except possibly at meeting points. This is seen by first considering a purely 
imaginary k,  when T ( k )  is selfadjoint so that it does not contain any nilpotents. The 
statement then follows by analytic continuation. 

Let us consider an eigenvalue A (0) which for k # 0 splits into several eigenvalues 
A,(k) ,  a E {a}, some of which may be permanently degenerate. The chosen k shall not 
be a meeting point for any member of the set {A , (k ) } .  Let P,(k) be the total 
eigenprojection associated with a particular A, ( k ) .  Suppressing the variable Y we 
denote by & j ( k )  the corresponding linearly independent eigenfunctions ( j  = 1,2 ,  . . . , r 
for an r-fold A,). Only proper eigenfunctions appear because eigennilpotents are 
absent. 

In going from 0 to k we take a path in the complex plane that avoids all meeting 
points of the A, (k ) ,  except for the splitting at k = 0. Thereby a bounded invertible 
transformation U ( k )  is defined, which depends analytically on k along the chosen path 
and obeys the set of equations (K, § 11.4.5, see also 00 11.4.2 and VII.1.3) 

P ( k ) P , ( k )  = Pm(O)U-l (k) ,  a € { a } .  

Applying both sides to ~ $ , ~ ( k )  we notice that the function daj(0)  := U-'(k)&j(k)  obeys 



2602 I KuEer and R Illner 

the relation 

4 a j ( O )  = P a  ( 0 ) 4 m j ( O ) .  

Hence this is an eigenfunction corresponding to A (0). Linear independence is preser- 
ved by the transformation. The transformation operator U ( & )  is the solution of the 
differential equation 

U'(k)  = Q ( k ) U ( k ) ,  with U(0)  = 1, 

Q ( k ) = ~ P l ( k ) P , ( k ) - C P l ( k ) [  1 - Z P a ( k ) ]  

Next we join the points 0 and k* by a path symmetric to the one we took from 0 to k .  
The transformation U ( - k * )  yields eigenfunctions corresponding to the eigenvalue 
A , ( k * ) = A z ( k )  of T(-k*) ,  

( 5 a )  

However, for the same eigenvalue we already have the eigenfunctions q5zj(k), which 
must be linear combinations of the 4, i ( -kY) .  

Further conclusions can be drawn from the reality of the operator C. A 
consequence is that T ( k )  and T(-k*)  = T'(k)  are complex conjugates of each other, in 
the sense that (T(k),y)* = T(-k*)x* .  We are going to write T * ( k )  = T(-k*) .  In the 
same sense we may state that P X ( k ) = P , ( - k * )  and U * ( k ) =  U(-/?*)). The first 
assertion follows from the definition of P, in terms of a Cauchy integral (K, § I.5.3), 
while the second is obtained by substituting -k* for k into the above differential 
equation for U ( k ) .  Thus the complex conjugate to relation ( 5 a )  is 

4aj(-k*)  := U(-k*)c$,j(O) = U(-k*)U-'(k)c$,j(k). 

4 2, (- k *) = U (k ) 4 z j  (0) = U ( k  ) U-' (- k *) 4 z j  (k ) , 
or 

&(k) = U(-k*)dzj(O) = v ( - k * ) v - ' ( k ) 4 z j ( - - k * ) .  ( 9 7 )  

For each j we now choose one of the combinations 4 a i ( k )  + 42j ( -k*)  or i[Gi(k) - 
~ $ 2 ~ ( - k * ) ]  in such a way that again a linearly independent set of eigenfunctions 
corresponding to A, (k )  is obtained. (One can show that this is always possible.) These 
new eigenfunctions will henceforth be denoted as ~ $ ~ ~ ( k ) .  A combination of equations 
(5a)  and ( 5 6 )  yields q5zj(k) as the adjoint solutions. Moreover, a unique set &(0) of 
real eigenfunctions corresponding to A (0) is obtained from both sides, 

&(O) = U-1(k )4 , j (k )  = U - l ( 4 * ) 4 2 j ( k ) .  ( 5 c )  

We orthogonalise and normalise the set thus obtained, so that henceforth 
(qLi(0), &(O)) = Sip Substituting expressions (5c) and taking account of the identity 
U-'(-k*) = U'(k) (K, 4 11.6.2), we find that for k # 0 the eigenfunctions and their 
adjoints, redefined according to equation ( 5 c ) ,  constitute a biorthonormal set, 

( 4 m i ( k ) ,  4$ j (k ) )  = S m p a i j -  (6) 

For A,  # A p  this relation follows directly from equation (2). 
Since U ( k )  depends upon the chosen path, so do the &(k)  for given ~$,~(0). 

Whenever the path is moved to the other side of a branch point of A, (k ) ,  the qhei(k) 
change. 
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To simplify the notation we shall henceforth drop the label j ,  so that a will be used to 
specify the individual biorthonormalised eigenfunctions. The one-dimensional pro- 
jection associated with &(k) is described by 

(7) 

as can be inferred from the commutation property (K, §III.5.6),  P , ( k ) T ( k ) x =  
T ( k ) P , ( k ) x  for all x E D ( C ) ,  and with the aid of equation ( 6 )  in connection with the 
requirement that Pz = P a  and POP, = 0. We conclude that 

pax = (x ,  4: M u ,  

l l p m  / I  = 1140 112 2 1 .  (8) 
If at some meeting point this norm diverges, an eigenfunction can still be constructed by 
renormalising qh,, as we shall see later. 

4. Branch points 

To understand the situation at branch points, it will suffice to examine the case of two 
simple eigenvalues A, ( k )  and A p  ( k )  meeting at their branch point ko. We already have 
expansion (4) for the eigenvalues, where we assume that c1 # 0. Similarly, the pro- 
jections should expand as (K, D 1 1 . 1 ,  Theorem 1.9) 

P , , , (k)  = I D ( k o  - k)-’ l2  + ; P +  O[(ko-  k ) ’ / 2 ] ,  (9)  

where P is the total projection corresponding to A (ko) .  Since P i , @  = Pa,p and PUPp = 0, 
D must be a nilpotent, such that D’ = 0 and P D  = D P  = D. Next we observe that 

A,Pa +ApPp = A ( k o ) P + 2 ~ l D  + O [ ( k o -  k)”’], (10)  
which in the limit gives the spectral resolution of T ( k o ) P  (K, 0 111.6.5). Terms diverging 
at k -+ ko would enter this result if expansion ( 9 )  were to include any higher negative 
powers of ( k o - k ) .  Such powers are ruled out thereby, so that the expansion is 
confirmed. 

The square roots of the form (Pax*, x )  = (&, x)’ and of a similar one for Po, with 
equation ( 9 )  substituted, show that the Puiseux expansions for the eigenfunctions must 
have the form 

4,(k, ~ ) = 4 ( u ) ( k o - k ) - ’ / ~ + i $ ( u ) ( k o - k ) ’ / ~ +  I . .  ( 1 l a )  
&(k, U) = - i ~ ( ~ ) ( k ~ - k ) - ’ / ~ + ~ i $ ( u ) ( k ~ - k ) ~ ’ ~ +  . . . . 

Dx = (x ,  4*)4, 

( 1 l b )  

(12)  

When k cycles around the branch point ko, the eigenfunction 4, consecutively turns 
into c$@, -&, -do, as seen from equation ( 1  l a ,  b ) .  Since the sign is irrelevant, only two 
of the four branches are meaningful. 

For P and D to have the required properties, the function 4 and $ must obey the 
relations 

According to equations (7) and (9) the coefficients 4 and 9 are such that 

px = (x ,  $*I4 + ( x ,  4*)& 

(4 ,4* )  = 0, (4, **) = 1 ,  ($3 $*I = 0. (13) 

p4 = 4, P$ = *, Daj = 0 ,  D$ = 4, (14)  

Therefore 
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as was to be expected. Letting T(ko)P = A (ko)P + 2clD act upon 4, we see that this is 
the renormalised eigenfunction corresponding to A (ko ) .  The same procedure reveals 
that $ is a generalised eigenfunction such that 

Thus the algebraic multiplicity of A (ko )  (= 2) exceeds the geometric multiplicity (= 1). 
The situation is in complete analogy with Kato’s example involving a symmetric two by 
two matrix (K, examples 11.1.1~ and 1 . 1 2 ~ ) .  

In passing we can take a look at the exceptional possibility that c1 = 0 but, say, c3 # 0 
in equation (4). The expansions for Pa,, then begin with *D(ko-  k)-3’2 and that for 4m 
with 4 ~ ( k ~ - - k ) - ~ / ~ .  Again D = ( -  , q5*)q5 and D2 = 0. 

If two simple eigenvalues remain holomorphic at a meeting point ko, so that this is 
not a branch point, it may still happen that the corresponding (renormalised) eigen- 
functions merge. In such exceptional cases the projections Pa,p have poles at ko (K, 
examples 11.1. lf and 1.12f), and the expansions are 

Am,0 = A ( k o ) + A & , p ( k - k o ) +  . . . 
Pa,, = * D ( k - k o ) - ’ + A , , p +  . . .  

and similarly for q5@, We have assumed that A L # A b ,  so that higher negative powers in 
(17) and (18) are ruled out by a similar argument as before. The total projection 
corresponding to A ( k o )  is P = A ,  + A ,  and the generalised eigenfunction $ = $, + $@. 

Relations of the form (12)-(15) again hold. 
The results are similar for meeting points of permanently degenerate eigenvalues, 

except that the whole basis of eigenfunctions belonging to each eigenvalue must be 
taken into account. If more than two eigenvalues form a cycle at a common branch 
point, this affects the exponents in equations (4), (9) etc. in an obvious way. 

Let us summarise: Eigennilpotents appear at branch points and possibly at some 
other meeting points of the eigenvalues. The eigenprojections are singular there. There 
and only there have eigenvalues greater algebraic than geometric multiplicity. In 
general, such points only occur at special values of k. 

Any linear combination of eigenmodes dm exp(ik . r )  exp(-hat) belonging to a 
multiple eigenvalue A, (k )  represents, of course, an eigenmode decaying at the same 
rate. A natural source of such degeneracy is the rotational invariance of the operator 
involved (see 9 6). 

The merging of different modes at branch points gives rise to non-exponentially 
decaying modes involving generalised eigenfunctions. To show this, we consider the 
following limit, 

h(r,  U ,  t )  = lim ( k o  - k)-1’4[q5a exp( - ha t )  - iq5@ exp( - A p t ) ]  exp(ik . r )  
k + k o  

= [ $ ( U )  - 2 c l 4 ( u ) t ]  exp(iko. r )  exp( - A t ) ,  (19) 

where equations (4) and (11) have been taken into account. With the help of equation 
(1 5 )  we can verify directly that the resulting expression (19) is indeed a solution of the 
kinetic equation (1). 
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5. Boundedness of eigenvalues 

In order to obtain a bound for the eigenvalues, we follow the reasoning applied by Kat0 
(K, § VII.4.7) to self-adjoint families of operators of type B. In the standard fashion of 
perturbation theory we take the derivative of equation (2) with respect to k and then the 
scalar product with 4:, to obtain 

A &  = (iv cos 64,, 4:) .  (20) 

where 6 is the angle between the vectors k and v .  
Next we vary k from 0 to some value k l  along a path which avoids all singularities of 

Pa, in particular the branch points of A,, so that this eigenvalue is uniquely determined 
along the path. In any neighbourhood of this path, there is only a finite number of 
singularities of P,. Indeed, an accumulation of such points would represent a stronger 
singularity and is ruled out by what has been covered in § 2. Thus the norm of the 
projection P, corresponding to 4, remains bounded along the path: llP,(k)ll= 

It has been shown in I that the quadratic form (U cos ax,  x) is relatively bounded 
with respect to (Cx, x) ,  with a vanishing relative bound. The proof implies that the 
same is true for the form (U [cos 41x, x) ,  ie: for any b > 0 an a > 0 can be found such that 

114, (kN2 s hf. 

(vlcos 6 1 ~ , x ) ~ a l l x l / ~ + b ( C x ,  x) 
for all x E D(C) .  Substituting C = T ( k )  -ikv cos 6, we obtain a similar statement for 
T ( k )  with bounded k, say lkl e K, 

( V I C O S  ~ I x ,  x)sa’/IxtI2+b’l(T(k)x, x)l, 

where a’ = a / ( l -  bK) and b’ = b/ ( l -  bK). We choose b <K-’ to make a’ and 6’ 
positive. 

IdA,ldkl= I(iv cos 64,, 9:)I ~ ( V I C O S  SI&, 4,) 

A sequence of inequalities now follows from equation (20), 

a’ll4,Il2+ b ’ K U k h ,  4,)/ (a ’+  b’lA,l)M. 

Integration over k, with IdA, 13 dlA,l taken into account, yields the bound 

a’+b’lA,(kl)l s(a’+b’h,(O)) exp(b’Ms), (21) 

where s is the length of the path from k = 0 to kl, 
k l  

s =jo Idkl. 

The growth rate is not very rapid since b’ can be made arbitrarily small, though at the 
expense of increasing a’. 

The conclusion is that the eigenvalues remain finite at finite k. A running away to 
infinity, as is possible for eigenvalues of operator families having a parameter-depen- 
dent domain (K, examples V.4.14 and VII. l . l  l), cannot occur. Hence the complete set 
of eigenvalues of T ( k )  represents a collection of analytic functions of k with no other 
singularities than branch points in the finite plane. 
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6. Classification of eigenfunctions 

For the selfadjoint T(0)  = C one can derive, using expression (3), a complete set of 
eigenfunctions factorised in spherical coordinates, 

4 n l m ( O ,  U)= u n / ( V ) Y l m ( 6 ,  ~ p ) ,  (22) 

n = 0 , 1 , 2 ,  . . . ;  l = n , n - 2 , n - 4  , . . . ,  l o r O ,  

m =0 ,  k l ,  *2 , .  . . , * l .  
Three labels n, I ,  m, analogous to quantum numbers for the isotropic three-dimensional 
oscillator (Morse and Feshbach 1953), are conveniently introduced for classification. 
The CY or aj etc. used before stand for triplets n, 1, m. We have chosen to associate the 
factor cos mcp with m 2 0, and sin Imlcp with m < 0. 

Rotational invariance of C also implies that the eigenvalues only depend upon n 
and I ;  hence A n l ( 0 )  is at least (21 + 1)-fold. In the special case with constant isotropic J 
there is, in addition, an accidental degeneracy in I ,  so that the eigenvalues only depend 
upon n, and A, is $(n + l ) (n  +2)-fold. This can be concluded from mathematical 
equivalence with the Schrodinger equation for the 3D harmonic oscillator. 

For k f 0, the operator T ( k )  only remains invariant against rotations around the 
vector k. With this vector taken for the polar axis, factorisation gives the eigenfunctions 
in the form 

Expression (3) yields an eigenvalue equation for U,/,, 

(C, +iku cos 6 -Anlm)unlm = 0, (24) 

where the operator C, differs from (3) by the substitution of - m2 for a2/ap2. 
Since the choice between cos mcp and sin mcp merely amounts to a rotation around k, 

the functions and 4nl-m belong to the same eigenvalue A,,lm. Hence all eigenvalues, 
except for m = 0, are at least double, and this degeneracy is permanent. However, we 
must expect that in general the m-degeneracy of A,,(O) is lifted by the perturbatim 
ik . U. The originally (21 + 1)-fold eigenvalue A,l(O) may split into (1 + 1) distinct 
eigenvalues Anlm(k), one of them simple (Anlo)  and the rest double. The case with 
constant J is again exceptional: the perturbation merely translates the whole spectrum 
by an amount proportional to k2, so that all degeneracies are permanent (McLennan 
1966). 

When k changes, analytic continuation only affects the factor unlm in equation (23). 
If two eigenvalues Anlm and A,,,lfm, with m f m’ meet, the corresponding eigenfunctions 
remain distinct. They cannot merge in the way they do at branch points and other 
singularities of the eigenprojections. Turning the argument around, we see that m = m‘ 
is a necessary condition for the eigenprojections associated with two eigenvalues to 
become singular at the meeting point, e.g. when this is a branch point. 

No further rules of this kind have been found, so that only a tentative picture of the 
general behaviour of the eigenvalues can be drawn (figure 1). It should be noted that 
beyond the branch point of two eigenvalues Anim and A,,l,, the labels n, n’, 1, I’ are no 
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Figure 1. Conceivable behaviour of eigenvalues An,,,, of the Fourier-transformed Fokker- 
Planck transport operator T ( k )  in dependence of k2. Complex-conjugate pairs of eigen- 
values appear beyond the branch points, marked by circles. 

longer adequate, and new ones must be invented ( n  and 1 cease to be good quantum 
numbers, one would say, in quantum mechanics). 

The same general behaviour of eigenvalues must also be expected with operators 
T ( k )  arising from other kinetic equations, in particular from the linearised Boltzmann 
equation, as long as the eigenvalues remain isolated from essential parts of the spectra. 
For simple models this can be confirmed by explicit calculation, as this was done for the 
one-speed model with linearly anisotropic scattering (Davison 1946, KuSEer 1969), 
where 

cos S = cos 6 cos 6' +sin 6 sin 6' cos(cp - cp'). 

The results for b = 1 are shown in figure 2 .  A branch point appears at k i  = 0.5738, 
where A ( k o )  = 0-5000. 

I 

II 

/ 

0 0 5  * 1 
A 

Figure 2. Eigenvalues AI,,, of a one-speed model for the Fourier-transformed Boltzmann 
transport operator. The point A = 1 belongs to the essential spectrum, which covers the line 
{AIA = 1 +ikp, - 1 Q p Q 1). 

7. Comment 

The functional-analytic methods used in the present investigation might find useful 
application also with non-selfadjoint operators occurring in other fields of physics. An 
example of considerable interest was mentioned by one of the referees: complex 
Hamiltonians invented for representing resonant sta.tes (Moiseyev et a1 1978). 
However, the example requires a fresh start, since those operators do not seem to meet 
all the conditions which facilitated the handling of the present problem. 
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